Sistemi di impianto dentale
Impianti Tapered Screw-Vent®

Panoramica dell’impianto TSV™

Celebrating 20 years of clinical use and over 6-million implants sold, the Tapered Screw-Vent (TSV) Implant has gained the trust of thousands of surgeons worldwide to deliver successful patient outcomes. This success is well documented with 130 peer-reviewed papers1 and a 98.7% cumulative survival rate.1-14

Stabilità primaria

La stabilità primaria ottenuta mediante impianti Tapered Screw-Vent consente di eseguire il posizionamento e/o il carico immediato in pazienti adeguatamente selezionati.2, 7, 15

• Le triple filettature sono realizzate per ottenere un contatto osseo profondo durante il posizionamento dell’impianto.15
• Il protocollo chirurgico per ossa a bassa densità consente la compressione dell’osso e fornisce stabilità aggiuntiva in zone di scarsa qualità.15 • Nelle ossa più dense, il trapano rifinitore a punta schiacciata consente un innesto osseo apicale per una stabilità iniziale.15


Stabilità secondaria

Biocompatibilità e resistenza

• Gli impianti Tapered Screw-Vent sono realizzati in lega di titanio di grado 5 scelta per la propria biocompatibilità32 e la propria resistenza.33-35
• I requisiti minimi in termini di resistenza a trazione e snervamento per questo materiale, stabiliti dall’American Society for Testing and Materials (ASTM) e dalla Organizzazione internazionale per la normazione (ISO), sono superiori del 32% e del 59% rispettivamente rispetto al più resistente titanio commercialmente puro disponibile.33-35
• Le specifiche di Zimmer Biomet Dental richiedono che la lega di titanio di grado 5 utilizzata per gli impianti Tapered Screw-Vent rispettino o superino gli standard combinati ASTM e ISO.1


Biocompatibilità e resistenza

• Contatto osso-impianto (BIC) e capacità osteoconduttiva di grado elevati.16, 17
• Risultati clinici di successo in condizioni di carico immediato.2, 5, 7, 9-11
• BIC superiore al 90% se confrontato al BIC del 42-77% ottenuto con superfici rivestite con TPS, sottoposte a sabbiatura, acidatura, ossidazione e rivestite con HA collocate in seni umani innestati.17

di formazione
maggiori informazioni

  • Opuscoli
  • Clinical Summaries
  • Manuali

1. Data on file with Zimmer Biomet Dental.
2. Shiigai T. Pilot study in the identification of stability values for determining immediate and early loading of Implants. J Oral Implantol. 2007;33:13-22.
3. Park SH, Lee KW, Oh TJ, Misch CE, Shotwell J, Wang HL. Effect of absorbable membranes on sandwich bone augmentation. Clin Oral Implants Res. 2008;19:32-41.
4. Steigmann M, Wang HL. Esthetic buccal flap for correction of buccal fenestration defects during flapless immediate implant surgery. J Periodontol. 2006; 77:517-522.
5. Lee CYS. Immediate load protocol for anterior maxilla with cortical bone from mandibular ramus. Implant Dent. 2006;15:153-159.
6. Cannizzaro G, Felice P, Leone M, Viola P, Esposito M. Early loading of implants in the atrophic posterior maxilla: lateral sinus lift with autogenous bone and Bio-Oss versus crestal mini sinus lift and 8-mm hydroxyapatite-coated implants. A randomised controlled clinical trial. Eur J Oral Implantol. 2009;2:25-38.
7. Siddiqui AA, O’Neal R, Nummikoski P, Pituch D, Ochs M, Huber H, Chung W, Phillips K, Wang IC. Immediate loading of single-tooth restorations: one-year prospective results. J Oral Implantol. 2008;34:208-218.
8. Ormianer Z, Schiroli G. Maxillary single-tooth replacement utilizing a novel ceramic restorative system: results to 30 months. J Oral Implant ol. 2006;32: 190-199.
9. Artzi Z, Parsori A, Nemcovsky CE. Wide-diameter implant placement and internal sinus membrane elevation in the immediate postextraction phase: clinical and radiographic observations in 12 consecutive molar sites. Int J Oral Maxillofac Implants. 2003;18:242-249.
10. Khayat PG, Milliez SN. Prospective clinical evaluation of 835 multithreaded Tapered Screw-Vent implants: results after two years of functional loading. J Oral Implantol. 2007;34:225-231.
11. Ormianer Z, Garg AK, Palti A. Immediate loading of implant overdentures using modified loading protocol. Implant Dent. 2006;15:35-40.
12. Lee CYS, Rohrer MD, Prasad HS. Immediate loading of the grafted maxillary sinus using platelet rich plasma and autogenous bone: a preliminary study with histologic and histomorphometric analysis. Implant Dent. 2008;17:59-73.
13. Lee CYS, Hasegawa H. Immediate load and esthetic zone considerations to replace maxillary incisor teeth using a new zirconia implant abutment in the bone grafted anterior maxilla. J Oral Implantol. 2008;34:259-267
14. Ormianer Z, Palti A. Long-term clinical evaluation of tapered multi-threaded implants: results and influences of potential risk factors. J Oral Implantol. 2006;32:300-307.
15. Rosenlicht JL. Advancements in soft bone implant stability. West Indian Dent J 2002; 6: 2-7.
16. Trisi P, Marcato C, Todisco M. Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts. Int J Periodontics Restorative Dent 2003; 23(5): 427-437.
17. Todisco M, Trisi P. Histomorphometric evaluation of six dental implant surfaces after early loading in augmented human sinuses. J Oral Implantol. 2006;32(4):153-166.
18. El Chaar E, Bettach R. Immediate placement and provisionalization of implant-supported, single-tooth restorations: a retrospective study. Int J Periodontics Restorative Dent 2011; 31(4).
19. Consolo U, Travaglini D, Todisco M, Trisi P, Galli S. Histologic and biomechanical evaluation of the effects of implant insertion torque on peri-implant bone healing. J Craniofac Surg. 2013; 24: 860-865.
20. Trisi P, Todisco M, Consolo U, Travaglini D. High versus low implant insertion torque: a histologic, histomorphometric, and biomechanical study in the sheep mandible. The Int J Oral Maxillofac Implants 2011; 26: 837-849.
21. Mihalko WM, May TC, Kay JF, Krause WP. Finite element analysis of interface geometry effects on the crestal bone surrounding a dental implant. Implant Dent. 1992;1:212-217.
22. Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants. 2006;21:105-202.
23. Brunette DM, Chehroudi B. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng 1999;121(1):49-75.
24. Cosyn J, Sabzevar MM, de Wilde P, de Rouck. Two-piece implants with turned versus microtextured collars. J Periodontal 2007;78:1657-1663.
25. Mazor Z, Cohen DK. Preliminary 3-dimensional surface texture measurement and early loading results with a microtextured implant surface. Int J Oral Maxillofac Implants 2003;18(5):729-738.
26. Chehroudi B, Gould TRL, Brunette DM. Effects of a grooved titanium-coated implant surface on epithelial cell behavior in vitro and in vivo. J Biomed Mater Res 1989;23:1067-1085.
27. Harel N, Piek D, Livne S, Palti A, Ormianer Z. A 10-Year retrospective clinical evaluation of immediately loaded tapered maxillary implants. Int J Prosthodont 2013; 26: 244-249.
28. Ormianer Z, Palti A. The use of tapered implants in the maxillae of periodontally susceptible patients: 10- Year Outcomes. Int J Oral Maxillofac Implants 2012; 27: 442-448.
29. Binon PP. The evolution and evaluation of two interference-fit implant interfaces. Postgraduate Dent. 1996;3:3-13.
30. Burgess AV, et al. Highly crystalline MP-1 hydroxylapatite coating. Part I: in vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings. Clin Oral Implants Res. 1999;10:245–256.
31. Shin SY, Han DH. Influence of a microgrooved collar design on soft and hard tissue healing of immediate implantation in fresh extraction sites in dogs. Clin Oral Implants Res. 2010;21:804-814.
32. American Society for Testing and Materials Committee on Standards. Designation B 348-94. Standard specification for titanium. Annual Book of ASTM Standards. Vol. 02.04. Philadelphia: American Society for Testing and Materials, 1994:141-146.
33. American Society of Testing and Materials International. Designation F67-06. Standard specification for unalloyed titanium for surgical implant applications. 2006.
34. International Organization for Standardization. ISO 5832-2: Implants for surgery – metallic materials – part 2: unalloyed titanium. Available online at:
35. International Organization for Standardization. ISO 5832-2: Implants for surgery – metallic materials – part 3: wrought titanium. 1996. Available online at:
36. Chang YL, et al. Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J Oral Maxillofac Surg. 1999;57:1096–1108.
37. Lee JW, et al. Preliminary Biomechanical and Histological Evaluations of Implants with Different Surfaces in an Ovine Model: Abstract presented at AO 2013 Conference, Tampa, Florida. (Study of 60 implants[30 each – Zimmer MP-1 HA and Straumann SLActive] placed bilaterally by a licensed clinician in femoral condyles of ovines [6 implants per ovine]).


Unless otherwise indicated, as referenced herein, all trademarks are the property of Zimmer Biomet; and all products are manufactured by one or more of the dental subsidiaries of Zimmer Biomet Holdings, Inc., and distributed and marketed by Zimmer Biomet Dental (and, in the case of distribution and marketing, its authorized marketing partners). For additional product information, please refer to the individual product labeling or instructions for use. Product clearance and availability may be limited to certain countries/regions. This material is intended for clinicians only and does not comprise medical advice or recommendations. This material may not be copied or reprinted without the express written consent of Zimmer Biomet Dental. ZB0046 REV A 06/18 ©2018 Zimmer Biomet. All rights reserved.