Table of Contents

RegenerOss Xenografts

Product Information
4

Case 1: Mandibular Molar: Extraction, Grafting and Implant Placement Seven Months Post-Op
6

Case 2: Maxillary Lateral Incisor: Extraction, Grafting and Implant Placement Five Months Post-Op
7

Case 3: Mandibular Molar: Extraction, Grafting Followed by Immediate Implant Placement
8

Case 4: Mandibular Premolars: Extraction and Bone Grafting Followed with Dental Implant Placement at a Later Date
9

Ordering Information
10
RegenerOss Xenograft is a porcine-derived carbonate apatite intended for bone repair and regeneration for oral surgical procedures.

Creating the Right Environment

RegenerOss Xenograft is highly porous, which allows an in-growth of blood vessels that provide an adequate supply of nutrients.

Ideal Porous Osteoconductive Scaffold

The osteoconductive surface and porous structure of RegenerOss Xenograft allow for new bone formation, both around and within the particle.

Easy to Use

Perforated cap is designed for easy hydration. Once fully hydrated remove cap and deliver product to defect sites.
Bone Repair and Regeneration for Oral Surgical Procedures

- Provides an osteoconductive scaffold for bone regeneration due to its anorganic, porous structure
- Ideal option for alveolar ridge reconstruction, maxillary sinus floor elevation, filling of periodontal defects including infrabony defects and defects after root resection, cystectomy and filling of extraction sockets

Natural Bone Carbonate Apatite Structure

- Carbonate apatite demonstrates better osteoconductive potential than hydroxyapatite\(^{3,4,5}\)
- Resorption and remodeling profiles are closer to natural bone than those of synthetic bone graft substitutes\(^4\)

The Right Environment for Bone Regeneration

- High porosity means that space is maintained for new bone deposition
- Surface roughness allows for cellular adhesion and bone in-growth\(^6\)

SEM of RegenerOss Xenograft

1. Data on file with Collagen Matrix, Inc.
Case 1: Mandibular Molar
Extraction, Grafting and Implant Placement 7 Months Post-Op

1. Preoperative radiograph revealing a suspected fracture. Partial loss of buccal plate due to repeated abscesses.

2. Atraumatic extraction performed to preserve alveolar bone and thin buccal gingival tissue.

3. Partial thickness elevation of buccal flap to assist in tissue closure.

4. RegenerOss Xenograft hydrated in the liquid expressed from preparation of L-PRF.

5. Socket grafted. A collagen membrane is placed over the grafted site.

6. Soft-tissue closure was observed at four weeks, and soft and hard tissues appear fully healed by six months.

7. Seven months postoperatively, implant placed, 3+ mm thick keratinized tissue over site, Osstell® measurement of 89 on insertion.

8. Postoperative radiograph, six months after final restoration.

Clinical photography courtesy of Robert A. Horowitz, DDS, Scarsdale, NY, USA
Case 2: Maxillary Lateral Incisor
Extraction, Grafting and Implant Placement 5 Months Post-Op

1. Preoperative radiograph revealing fracture of the maxillary right lateral incisor.

2. The fractured coronal segment was removed and the rest of the root was extracted and the socket was debrided.

3. The socket was grafted with RegenerOss Xenograft hydrated in L-PRF followed by placement of a collagen membrane.

4. After inserting the barrier under the facial flap, primary closure was obtained.

5. The soft tissues were fully healed by four weeks postoperatively.

6. Seven weeks after extraction and grafting, an endosseous implant was placed to support a screw-retained crown.

7. Five months after healing, the site was uncovered. The implant was fully stable. A PRF plug was placed around the healing abutment and the soft-tissue flaps were secured with intermittent sutures.

8. Two-year postoperative radiograph showing stable bone level.
Case 3: Mandibular Molar
Extraction, Grafting Followed by Immediate Implant Placement

1. Preoperative radiograph showing periodontal recession, apical root resorption, and furcation involvement on teeth numbers 30 and 31.

2. Minimal flap elevation performed after atraumatic extraction of tooth number 31. The socket was debrided.

3. An implant was placed in site number 31. Roots were treated on the facial of tooth number 30 in preparation for osseous and periodontal grafting in the sextant.

4. RegenerOss Xenograft prior to hydration.

5. RegenerOss Xenograft hydrated in L-PRF and inserted in socket, buccal furcation and over the top of the newly inserted implant in site number 31.

6. Primary soft-tissue closure was accomplished and maintained in site number 31 throughout healing.

7. At uncovering, five months after implant insertion, 3 mm of regenerated tissue had to be removed from over the implant in site number 31.

8. Postoperative radiograph showing screw-retained restoration at six months.
Case 4: Mandibular Premolars
Extraction and Bone Grafting Followed with Dental Implant Placement at a Later Date

1. Preoperative radiograph revealing large radiolucent areas around the roots of both premolar teeth.

2. Significant bone was lost interproximally and 5 – 8 mm of buccal alveolar plate was lost due to periodontal and endodontic infections.

3. RegenerOss Xenograft and barrier hydrated in saline and inserted in the sites to restore full alveolar height and width.

4. Primary closure obtained and maintained through the course of healing under a fixed transitional restoration.

5. At seven months, full thickness flaps were elevated revealing significant improvement in alveolar height and width.

6. Two dental implants were placed in ideal locations for screw-retained restorations.

7. Histologic analysis of the retrieved core shows 42% vital bone and 15% graft.

8. Postoperative Radiograph of implants in place.

Clinical photography courtesy of Robert A. Horowitz, DDS, Scarsdale, NY, USA
Ordering Information

Small Particles

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROXR05</td>
<td>RegenerOss Resorbable Xenograft, 250 - 1000 µm, 0.5 cc</td>
</tr>
<tr>
<td>ROXR10</td>
<td>RegenerOss Resorbable Xenograft, 250 - 1000 µm, 1.0 cc</td>
</tr>
<tr>
<td>ROXR20</td>
<td>RegenerOss Resorbable Xenograft, 250 - 1000 µm, 2.0 cc</td>
</tr>
<tr>
<td>ROXR40</td>
<td>RegenerOss Resorbable Xenograft, 250 - 1000 µm, 4.0 cc</td>
</tr>
</tbody>
</table>

Shelf-life: Three (3) years

Large Particles

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROXRLG10</td>
<td>RegenerOss Resorbable Xenograft, 1000 - 2000 µm, 1.0 cc</td>
</tr>
<tr>
<td>ROXRLG20</td>
<td>RegenerOss Resorbable Xenograft, 1000 - 2000 µm, 2.0 cc</td>
</tr>
</tbody>
</table>

Shelf-life: Three (3) years

Syringe Delivery - Small Particles

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROXRS025</td>
<td>RegenerOss Resorbable Xenograft, Syringe, 250 - 1000 µm, 0.25 cc</td>
</tr>
<tr>
<td>ROXRS05</td>
<td>RegenerOss Resorbable Xenograft, Syringe, 250 - 1000 µm, 0.5 cc</td>
</tr>
</tbody>
</table>

Shelf-life: Two (2) years